
Multi-modal Predictive Model for MACE Risk
Estimation in Patients with Migraine

Abstract—Clinical research has indicated a link between mi-
graine related characteristics and risk of adverse cardiovascular
and cerebrovascular events. We propose a fusion predictive
model with graph convolution as backbone, for estimating risk
of such events among migraine patients using their neurology
consultation notes and history of prescription medication. We
propensity matched our dataset on all known cardiovascular
disease risk factors so that our model can learn relationships be-
tween migraine related features and cardiovascular disease. Our
fusion based risk prediction model outperformed all comparative
models in terms of prediction accuracy. Post-hoc analysis shed
light onto migraine characteristics related to vascular disease
risk.

Index Terms—Graph neural networks, Multi-modal modeling,
MACE risk estimation

I. INTRODUCTION

Migraine is a common neurological disorder characterized
by episodic severe headache which are accompanied by au-
tonomic nervous system dysfunction [1], [2]. In the United
States, the 1-year prevalence of migraine is approximately
18% in women and 6% in men. Approximately 28 million
Americans report severe and disabling migraine [3]. Several
clinical research studies have been performed to study the link
between specific migraine characteristics and medication and
major adverse cardiovascular events (MACE) [4]–[8]. Some
efforts have been made to include migraine while predicting
risk of cardiovascular disease and stroke [6], [8]. We present
a machine learning based approach to estimate risk of MACE
among migraine patients using migraine-related features.

We propose a predictive model that can process free-
text clinical notes and tabular information about patient’s
medication history to predict risk of future MACE outcome.
Clinical notes included all information recorded during a
migraine patient’s visit to neurology department. We argue
that clinical notes where clinicians record their impressions
of important migraine characteristics of any patient, e.g.,
severity, frequency or presence of aura and related symptoms
like photophobia and phonophobia comprehensively capture
migraine-related clinical features. Otherwise, migraine related
features may need to be obtained from questionnaires provided
to migraine patients which may require additional time and
effort from clinical experts. Medications are routinely recorded
in electronic health records (EHR) in tabular form. Technical
challenge lied in fusion of these two heterogeneous modalities,
i.e., free-text and tabular data.

We are leveraging graph convolutional neural networks
(GNNs) as the backbone for MACE risk prediction model
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to model the topological structure between patients. In recent
years, graph convolutional modeling has proven to be very
effective for a number of machine learning problems where
individual samples form an informative ‘neighborhood’ [9]–
[14]. Graph-based modeling allows the model to perform two-
fold learning, i.e., the model not only learns from features of
the an instance (a node in a graph) but also from features
of ‘similar’ instances. Definition of similarity is left upto
the model designers. In contrast, traditional convolutional
neural network can process data elements only in reference to
their spatial neighborhood. GNNs have better capabilities of
handling missing data and display have higher data modality
agnosticism [11], [13]. GNNs have been widely applied for
predictive modeling for autism spectrum disorder (ASD) and
Alzheimer with patients as nodes and ‘neighborhood’ defined
by demographically similar patients [9]. In addition, GNNs
have been used to predict clinical events like discharge from
hospital, mortality, readmission to the hospital, etc., with
clinical similarity used to define ‘neighborhoods’ of patients
[10]–[13]. In this work, we defined graph structure with
migraine patients as nodes and neighborhoods defined by
similarity among patients based on their history of prescribed
medications. Clinical notes for each patient were used to de-
sign node feature vectors. MACE risk was estimated for each
node/patient as target label while allowing the model to learn
from the notes of the corresponding patient as well as notes
of patients with similar medication prescription history. Thus,
MACE risk was estimated by leveraging two-fold learning
properties of GNN for fusion to two heterogeneous clinical
data elements, i.e., clinical notes and medications’ record.

II. METHODOLOGY

A. Cohort Selection

We identified 1107 patients being treated at Institute X
for migraine with MACE (cardiovascular events of stroke,
myocardial infarction and hemorrhage) outcomes recorded
after their diagnosis of migraine. These patients formed our
case set which was propensity matched with an equal number
of control samples (patients with no recorded MACE after
migraine diagnosis) based on the following factors; i) age, ii)
gender, iii) diabetes, iv) hypertension, v) hyperlipidemia, vi)
atrial fibrillation. Propensity matching factors were curated
from recorded ICD-9/10 codes in EHR after verification of
selected codes with clinicians. Figure 1 shows details of cohort
selection. 20% patients were randomly sampled from this
cohort and held-out from training process to serve as test set
for the risk prediction models.



Fig. 1: Cohort selection

B. Clinical Data Elements

1) Clinical Notes: Since we focused on identifying po-
tential risk factors for MACE among migraine patients, we
decided to incorporate clinical notes written by neurologists
during their consultation with migraine patients. We argue
that these notes allow our model to incorporate experts’
clinical observations individual to each patient, hence, more
comprehensive clinical insight compared to relying on a pre-
selected set of clinical features. Neurologist may note dis-
tinctive clinical characteristics of each patient, in addition to
recording standard clinical features like frequency and severity
of headaches.

We collated all neurology notes of a patient and used a regu-
lar expression based framework to identify sentences related to
migraine and migraine related symptoms. This step curtailed
the length of free-text information for each patient, making it
suitable for processing through large language models (LLM).
We used BioGPT [15] to generate embeddings of concatenated
clinical text for each patient. BioGPT was chosen as it was
designed for the domains of medicine and biology compared
to general purpose LLMs like GPT.

2) Tabular Electronic Health Records: In addition to clin-
ical notes, we had access EHR of migraine patients includ-
ing their demographic features, diagnosis, procedures, and
medications. Demographic features like age and diagnosis
and procedures related to cardiovascular disease represent
obvious risk factors for future MACE. We aimed at identi-
fying migraine-related risk factors specifically. Therefore, we
curated a propensity matched dataset where case and control
samples were matched on obvious MACE risk factors. Since
the use of some migraine medications, like triptans [16], could
theoretically increase the risk of MACE amongst individuals
with cardiovascular disease, we decided to incorporate medi-
cations in our predictive modeling. Therefore, we decided to
incorporate medications record in our predictive modeling.

While there may be thousands of different medications, they
are categorized into 48 therapeutic classes based on their func-
tion. For each patient, we generated 48-dimensional feature
vector where each element represented count of medication

prescribed to the patient under the corresponding therapeutic
class.

Any patients in the propensity matched set which had either
of the two chosen clinical data elements were dropped.

C. Graph Neural Network

GNN architecture can process an input graph G(N,E)
where N denotes the set of nodes and E denotes the set
of edges. In our case, ith patient was represented by ith

node, and has two feature vectors; i) node feature vector
(ni) formed by BioGPT-based embedding generated from
parsed clinical notes of ith patient, and ii) edge feature vector
(vi) formed as 48−dimensional medication therapeutic class
records. An edge between patient i and j was decided based
on similarity function Sim(ei, ej) based on their edge feature
vectors (medication records). GNN model learned to generate
embeddings for ith patients by manipulating nodes features
of this node (ni), and ‘messages’ received from nodes in its
edge-connected neighbor (η(i)).

In essence, ‘messages’ passed to ith nodes are features of
the nodes nj ,∀nj ∈ η(i) . GNN model, through its training
process, learns the function parameters to manipulate features
of the ith node (ni) as well as ‘messages’ being received from
its neighborhood. Hence, GNN is capable of two-fold learning.
The model learns from the features of ith node directly, and
implicitly learns from information used for edge formation
(edge features ei), through incorporation of ‘messages’ from
edge-connected nodes (nj ,∀nj ∈ η(i)).

At k+1th graph convolutional layer, the following describes
the process of generating embedding of ith node (nk+1

i )

nk+1
Ni

= aggregate(nk
j ,∀vj ∈ η(i)) (1)

nk+1
i = σ(Wk+1 × ϕ(nk

i , n
k+1
N(i))) (2)

Our case represented a supervised learning scenario where
class label regarding future MACE (True or False) were
present during training for each node. In this case, node/patient
embedding generated by graph convolutional layers was used
to predict target label ŷi for ith node/patient as

ŷi = σ(Wfc × nk+1
i ) (3)

Through back-propagation of binary cross entropy loss
based on groundtruth labels (y) and predicted labels (ŷ),
weight matrices of K graph convolutional layers Wk∀k ∈ K
and classification layer Wfc were optimized.

Our modeling scheme was inspired by SAGE (SAmple and
aggreGatE) graph convolution network (GraphSAGE) [17].
A sample aggregate function was optimized to collect and
manipulate ‘messages’ from the neighborhood of ith nodes
and its own node features ni to generate embedding of ith

node/patient. At the time of inference, this optimized aggregate
function was used to collect and process messages from
neighboring nodes in potentially un-seen graph structures.
Thus, our model can inductively reason to assign labels to
unseen nodes in unseen graph structures.



Model Sensitivity Specificity
Medication-only Model 0.75 0.39
Clinical note-only Model 0.64 0.56
Late fusion 0.58 0.74
GNN-based fusion model 0.64 0.67

TABLE I: Performance for prediction of future MACE by
single-modality and fusion models

Fig. 2: Receiver operating characteristics curves

III. RESULTS

A. Comparative Models

As we propose a GNN based multi-modal fusion model for
MACE risk estimation, intuitive baseline or comparative mod-
els include single modality models using the same clinical data
elements and traditional fusion model. The list of comparative
models is as follows.

• Medication-only: random forest classifier to predict
MACE risk using only medications for each patient

• Clinical note-only: classifier on top of BioGPT backbone;
BioGPT backbone was frozen before training the classi-
fication layers.

• Late Fusion: logistic regression based meta-learner for
fusing MACE risk estimates from medication-only and
clinical-not only model

Table I shows comparative performance of these models
and the proposed GNN based model in terms of sensitivity
and specificity. While either sensitivity or specificity can
be increased at the cost of the other, area under the ROC
incorporate the trade-off between the two. ROC plots with
AUC values are shown in Figure 2. Figure 3 shows confusion
matrix for the labels predicted by our GNN based model.

IV. DISCUSSION

Quantitative analysis (Table I) indicated that the
medications-only model was highly sensitive (identified
large fraction of patient with high risk for MACE) but
suffered from low specificity (generated many false positive
labels, i.e., over-diagnosed patients with high risk for
MACE). The late fusion model showed the opposite trend

Fig. 3: Confusion matrix for the GNN-based model

(high specificity, low sensitivity). GNN model displayed
balanced performance in terms of sensitivity and specificity.
It outperformed the notes-only model in terms of specificity
while achieving equivalent sensitivity. ROC curves ( Figure
2) established the superiority of GNN based model as it
achieved the best AUROC. All well-known risk factors for
MACE were balanced in our propensity matched cohort with
the aim to allow the model to learn correlations between
migraine related clinical features and MACE. This may
explain moderate performance of even the best performing
model indicating only moderately strong correlation of
migraine related features with MACE.

A. Post-hoc Investigation of Risk Factors

Our cohort selection through propensity matching was fo-
cused on making sure that the dataset was balanced in terms of
known risk factors for MACE including demographic factors
like age and commodities like hypertension and atrial fibrilla-
tion. We wanted our model to focus on clinical characteristics
that were of interest for migraine experts like neurologists.
These characteristics were provided as input to the model
through clinical notes’ text.

As a post-hoc investigation of migraine-related clinical fea-
tures and their association with MACE risk, we parsed clinical
text of true positive (patients with future MACE correctly iden-
tified by the model as high-risk for MACE) and true negative
(patient with no recorded future MACE correctly identified
the model as low-risk for MACE) samples for identification of
positive mention of expert-identified migraine-related features.
Regular expression-based parsing was applied to filter our text
with negated mention of these clinical features. The list of
clinical features is as follows; ‘photophobia’, ‘phonophobia’,
‘osmophobia’, ‘nausea’, ‘vomit’, ‘anxiety’, ‘aura’, ‘depres-
sion’, ‘white matter hyperintensity’, ‘patent foramen’, ‘small
vessel’, ‘ischemic’, ‘allodynia’, ‘pulsating’, ‘throbbing’, ‘bi-
lateral headache’, ‘unilateral headache’, ‘bilateral migraine’,
‘unilateral migraine’, ‘brain fog’.

Figure 4 shows word clouds generated from clinical text of
true positive and true negative samples after parsing the text to
preserve only non-negated mention of expert-defined clinical



(a) High-risk for MACE (true positive samples)

(b) Low-risk for MACE (true negative samples)

Fig. 4: Word clouds generated by clinical text of low- and
high-risk patient for MACE

features. It appears that most of the migraine-characteristics
like ‘unilateral’ vs. ‘bilateral’ headache’, ‘pulsating’ or ‘throb-
bing’ headache, and migraine-related symptoms like ‘photo-
phobia’, ‘phonophobia’ and ‘osmophobia’ have almost similar
representation in both low- and high-risk patients sets. Situ-
ation is similar with associated disorders like ‘anxiety’ and
‘depression’. These mental health disorders also seem equally
prevalent in both high and low risk groups. Interestingly,
migraine with aura which is generally considered a risk factor
for stroke [4] did not hold high association with MACE in
our cohort. However, ‘white matter hyperintensity’ and ‘small
vessel ischemic’ disease held higher prevalence in the high risk
group as compared to low risk group. This post hoc investiga-
tion was aimed at directing future clinical investigation beyond
known cardiac disease risk factors, especially for migraine
patients.

V. CONCLUSION

We designed and evaluated a MACE risk estimation model
for migraine patients using unique multi-modal fusion mod-
eling architecture based on graph convolution. Our fusion
modeling scheme allowed us to incorporate important obser-

vations recorded by the neurologists’ in clinical notes and
medication history of migraine patients for risk estimation. Our
model outperformed all comparative baseline models including
single modality models and traditional fusion models. Post-
hoc analysis provided insights into expert-defined clinical
characteristics set and risk of MACE.
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