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Abstract—Clinical prediction models (CPMs) increasingly rely
on multiple modalities to predict clinical outcomes. The use
of free-text data sources (e.g., chief complaint, medical notes)
presents new challenges in the heterogeneity of the text across
providers and patients and the need to convert the free text to
numerical features before combining with other modalities. Prior
work has employed multi-head architectures to learn separate
heads for different modalities. In this work, we propose a new
approach of constructing a unified text prompt that captures
information from multiple modalities. We then use existing large-
language models (LLMs), optimized with diagnosis-contrastive
learning (DCL) to encode the unified prompt and make clinical
predictions. We test our approach on the prediction of a variety
of outcomes from emergency department visits using a free-
text chief complaint and structured numerical data, including
demographic information and vital signs. We find that optimized
LLMs with unified prompts outperform LLMs that only use the
chief complaint by 0.02 weighted F1 score (p < 0.0001) and
models that only use the structured data modality as numerical
inputs by 0.15 (p < 0.0001) in predicting acuity. We also observe
improvements in the prediction of clinical outcomes, including
hospital admission, length of stay, and time to revisit.

Index Terms—multimodal, clinical prediction, large-language
models, LLM, unified, prompting, self-supervised learning, con-
trastive learning, EHR

I. INTRODUCTION

Clinical prediction models (CPMs) integrate an increasing
number of data sources - including the patient interview,
bedside monitoring, and the electronic health record (EHR)
- to assist in tasks ranging from determining patient acuity
in the emergency department to predicting patient outcomes,
such as length of stay, probability of hospital readmission,
and risk of specific diseases like asthma exacerbations [1]–
[4]. With an increasing variety of data sources, CPMs must
simultaneously handle multiple modalities of input features.
Table I surveys and compares cost of acquisition of differ-
ent data modalities and features. Free-text chief complaints
requires no processing and are often provided directly by a
patient early in an encounter. Structured data (i.e., categorical
variables like demographics or numerical data like vital signs
or lab results) may be collected and processed later. Finally,
imaging data and lab tests are most expensive time-consuming
to acquire and process [5].

Different data modalities present unique challenges. In par-
ticular, the text modality presents challenges in heterogeneity
across providers and patients [6], frequent misspellings and
uncommon abbreviations [7], and the need to convert free text
into numerical or categorical features in order to combine with
other modalities [8].

Prior work has proposed training unified models to under-
stand multiple data modalities using separate model heads
and make clinical predictions [9]. This approach requires a
multi-head architecture trained from scratch with a separate
encoding for each modality. For example, text is tokenized
while structured data is passed through a linear projection layer
and the results are passed through a multi-head attention layer.

In this work, we propose a method for clinical prediction
using unified prompts and existing LLMs optimized with
diagnosis-contrastive learning. We hypothesize that since nu-
merical data modalities can be reduced to text - for example,
demographics and vital signs can simply be described in text
- a single encoder model can then be supplied a single unified
prompt that captures information from multiple modalities. We
construct this unified prompt by simply concatenating string
representations of both unstructured data (i.e., chief complaint)
and structured data (i.e., demographic information and vital
signs) and then finetune an existing LLM to predict clinical
outcomes given the unified prompt.

Our contributions are as follows:
1) Demonstrate that existing LLMs can be used for multi-

modal clinical prediction.
2) Present a method of constructing unified prompts for

existing LLMs, optimized with diagnosis-contrastive
learning, to predict varied clinical outcomes.

3) Evaluate the ability of pretrained LLMs to generalize to
diverse multimodal clinical prediction tasks.

II. METHODS

In this work, we focus on clinical prediction using multiple
modalities: text and structured data. Our proposed method
comprises of (a) constructing a unified prompt and (b) using
existing LLMs (c) pretrained with self-supervised diagnosis-
contrastive learning (DCL) to encode the unified prompt for
clinical prediction.
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Fig. 1. End-to-end pipeline. Our proposed method of combining multiple modalities into a unified prompt and using existing LLMs for clinical prediction.

TABLE I
DIFFERENT MODALITIES WITH VARYING ACQUISITION COST

Modality Feature Acquisition Cost

Text Chief Complaint

Reported directly by the
patient either at admission
time or through a tele-
health application [3].

Structured Data

Demographics

Collected by dispatch in
prehospital assessment
[10] or < 1 minute to
collect in clinic [5].

Vital Signs

Monitored in real-time
with wearables [11] or
collected within an hour
of arrival [12].

Image Lab Tests
Varying door-to-X time
for imaging [13], ECG
[14], cath lab [15]

A. Unified Prompt Construction

Given a set of input features, we generate a single string
prompt that serves as the input to the LLM. Each input feature
is converted to a string. Chief complaints are assumed to be
free text. Demographics and vitals are a mix of categorical
and numerical variables. These are again converted to strings
without any binning or one-hot encoding. For each feature, we
prefix with a short string label - e.g., ”Gender: ” for gender.
The resulting strings are concatenated to form the prompt that
is then supplied to the LLM. The output embedding of the last
layer of the LLM is then classified by the predictor head.

B. Existing LLMs

We propose using existing LLMs to encode unified prompts.
Although the approach taken in prior work has been to train
a transformer model from scratch to predict clinical outcomes
[9], we observe that many LLMs have been pretrained to
understand information sourced from different data modal-
ities [16]–[18]. For example, ClinicalBERT [16] has been
pretrained on clinical reports which captures information from
chief complaints, demographics, vitals, and lab tests. Indeed,
in our experiments we find that ClinicalBERT used as an
encoding model for unified prompts outperforms other LLMs
including BERT and BiomedBERT, which is pretrained on
scientific papers instead of clinical reports.

C. Predictor Head

Finally, we construct a classification head that takes LLM
embeddings as input and generates the output label depending
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Fig. 2. Training workflow. Proposed method for learning to encode mul-
timodal input with (1) a DCL-optimized LLM encoder and (2) a finetuned
predictor model.

on the task. The classification head is a small feedforward
neural network (FNN) trained on a smaller amount of super-
vised training data. We found that a nonlinear FNN yields
significantly higher accuracy than a simple linear probe.

D. Diagnosis-Contrastive Learning

We optimize the LLM with contrastive loss to align em-
beddings with diagnostic information. We adapt the NT-Xent
loss function [19] and the SimCLR method [19], defining
positive pairs as pairs of unified prompts corresponding to the
same diagnosis (ICD-10 code). By minimizing this diagnosis-
contrastive loss function, the LLM learns similar embeddings
for different inputs with same diagnosis. This method is en-
tirely task-agnostic and since many clinical outcomes correlate
with the diagnosis, the resulting optimized LLM can generalize
to varied clinical prediction tasks (evaluation results shown in
Figure 4).

III. RESULTS

A. Setup

1) Dataset: We evaluate our approach for multimodal clin-
ical prediction with the MIMIC-IV-ED dataset of emergency
department (ED) visit records from the Beth Israel Deaconess
Medical Center from 2011 to 2019 [20]. Our data processing
workflow for sampling, filtering, and splitting the dataset is
shown in Figure 3.
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Fig. 3. Dataset processing steps.

Given significant class imbalance, we (1) split the data
using stratified sampling across classes and (2) oversample the
data using the class weighting approach introduced in [21].
In oversampling, each class with n samples is weighted by
1/En where the effective number of samples is defined by
En = (1− βn)/(1− β) with β = 0.99999.

In our work we focus on both multiclass and binary classifi-
cation with 3 output classes for the tasks of predicting acuity,
length of stay, and time before revisit and the 2 classes for
predicting hospital admission.

2) Models: In our evaluation, we use ClinicalBERT [22], a
large-language model (LLM) trained on clinical reports, as an
encoder model. We also evaluated BERT and BiomedBERT,
which is trained on PubMed articles, but found that Clini-
calBERT generally outperforms [17], [18]. Although Clinical-
BERT is trained for text generation, we repurpose it as an
embedding model by taking the hidden state of the last layer
as the output embedding. For the predictor head, we use a
small feedforward neural network with one size-128 hidden
layer.

Although we do not include a detailed comparison in this
paper of our method against baseline methods from prior work
such as using TF-IDF [23] or Word2Vec [24], we have found
that TF-IDF and Word2Vec both tend to underperform BERT
encoding models for chief complaint classification.

3) Hyperparameters: We tuned the following hyperparam-
eters for the LLM encoder and predictor models: batch size
∈ [32, 64, 128, 256, 512], learning rate ∈ [1e-5, 2e-5, 3e-5,
5e-5], and NT-Xent loss temperature ∈ [0.05, 0.1]. For each
configuration, we ran five trials each with a random split of
the dataset, and then chose the hyperparameters yielding the
highest overall or per-class accuracy.

B. Benefit of multiple modalities

We first evaluate the benefit of our proposed approach across
a variety of clinical prediction tasks. As points of comparison,
we test using only the text modality or only the structured data
modality. For a baseline, we also test using only structured data
with a typical multi-head architecture. Our results are shown
in Figure 4.
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Fig. 4. Performance improvement from combining modalities and DCL.
Mean and standard error shown for the prediction of various tasks using DCL-
optimized ClinicalBERT on unified text prompts consisting of different sets
of features. Structured refers to structured data modality features and Text
refers to text modality features.

We find that across 3 out of 4 tasks, combining modalities
yields a higher performance. In predicting acuity, using both
text and structured data achieves a weighted F1 score 0.02
higher (P < 0.0001) than just text, 0.16 higher (P < 0.0001)
than just structured data, and 0.15 higher (P < 0.0001) than
just structured data and no LLM. The exception is the task of
predicting time to revisit where we observed higher variance
in performance.

Figure 4 shows that Structured+Text has a smaller perfor-
mance gain over Text-only than over Structured-only. This can
be attributed to different modalities contributing differently to
performance. We evaluate this in Section III-C1.

C. Ablation study

We conduct an ablation study to quantify and understand
(1) the importance of different features, (2) the effect of
pretraining with diagnosis-contrastive learning (DCL), and (3)
using a unified prompt instead of a multi-head architecture.

1) Importance of features: To understand feature impor-
tance, we remove different sets of features and compare the
change in performance measured by weighted F1 score. The
4 sets of features we consider are: chief complaint, pain level,
demographics (gender and age), vitals (temperature, heart rate,
respiratory rate, blood pressure O2 saturation). Table II shows
the change in performance of predicting acuity with different
feature sets removed. We find that removing chief complaint
has the largest impact on performance with a decrease of 0.16
(p < 0.0001) in weighted F1 score. Demographics and vitals
each have the next largest impact on performance with 0.01
each (p = 0.0015). The highest performance is achieved when
all features are used, again demonstrating the benefit of com-
bining the text modality (chief complaints) with the structured



TABLE II
ABLATION OF SETS OF FEATURES OF DIFFERENT MODALITIES. MEAN AND STANDARD ERROR SHOWN FOR THE PREDICTION OF VARIOUS TASKS

USING DCL-OPTIMIZED CLINICALBERT ON UNIFIED TEXT PROMPTS CONSISTING OF DIFFERENT SETS OF FEATURES. ENTRIES WITHOUT STANDARD
ERROR ARE RESULTS FROM TWO TRIALS.

Features Acuity Admitted Length of Stay Time to Revisit

All Features 0.67 ±1.45× 10−3 0.75 0.39 0.77
− Pain 0.67 ±2.76× 10−3 0.75 ±8.48× 10−4 0.39 ±2.37× 10−3 0.77 ±3.69× 10−3

− Demographics 0.66 ±1.13× 10−3 0.74 ±1.17× 10−3 0.38 ±2.88× 10−3 0.76 ±3.48× 10−3

− Vitals 0.66 ±1.51× 10−3 0.75 ±1.04× 10−3 0.39 ±6.27× 10−4 0.76 ±4.79× 10−3

data modality (demographics and vitals). Prior studies support
that chief complaints contribute more to predictive accuracy
than structured data like laboratory results [9], and our results
demonstrate further performance gain with DCL.

2) Effect of pretraining: In Table III, we evaluate the impact
on performance by pretraining with self-supervised diagnosis-
contrastive learning (DCL). In the task of predicting acuity, we
find that DCL yields a significant improvement of 0.06 (p <
0.0001) in weighted F1 score. We also observe a performance
improvement with DCL in the tasks of predicting hospital
admission (+0.08) and length of stay (+0.25). The effect of
DCL is less pronounced when using a multi-head architecture.

3) Comparison with multi-head architecture: Finally, we
compare our proposed approach of using a unified prompt
against a more common approach of creating a multi-head
architecture. In this architecture there are two one-layer heads:
one for the text (chief complaint) embedding vector and the
other for the structured data (demographics and vitals) vector.
The outputs of each head are combined by summing before
passing through the rest of the network. We find there is no
significant improvement in performance from using the multi-
head architecture, demonstrating that a single LLM encoder
and unified prompt can perform on par (Table III).

IV. CONCLUSION

In this paper, we demonstrated that existing LLMs can be
prompted to encode multiple modalities of input to complete
clinical prediction tasks by constructing unified cross-modality
text prompts. We further showed the benefit of self-supervised
diagnosis-contrastive learning to improve predictive accuracy
with multiple input modalities. We found that our proposed
approach yielded a significant improvement in performance
(weighted F1 score) across the tasks of predicting hospital
admission, length of stay, and acuity (improved by 0.15, p
< 0.0001) using unified prompts instead of structured data
only. Our approach demonstrates that contrastive LLM repre-
sentation learning with simple unified prompts can effectively
combine the modalities of text chief complaints and structured
data to achieve improved accuracy on clinical prediction tasks.
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